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Imaging through nonstatic scattering media is one of the major challenges in optics, and encountered in imaging
through dense fog, turbid water, and many other situations. Here, we propose a method to achieve single-shot
incoherent imaging through highly nonstatic and optically thick turbid media by using an end-to-end deep neural
network. In this study, we use fat emulsion suspensions in a glass tank as a turbid medium and an additional
incoherent light to introduce strong interference noise. We calibrate that the optical thickness of the tank of
turbid media is as high as 16, and the signal-to-interference ratio is as low as −17 dB. Experimental results show
that the proposed learning-based approach can reconstruct the object image with high fidelity in this severe
environment. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416246

1. INTRODUCTION

Conventionally, an optical imaging system can be regarded sim-
ply as a one-to-one mapping system, as a spherical wavelet
emitted from a local point on the object plane is converged
by the imaging optic and forms a unique point (subject to dif-
fraction) on the imaging plane. In this way, a clear image of the
object can be formed. However, the presence of scattering me-
dia between the object and the imaging optic prohibits such a
clear image from being formed because a significant part of the
light propagating all the way from the object to the optic is
scattered many times, producing a noise-like scattered pattern
on the image plane. As the optical thickness of the scattering
medium is larger than a certain value, the scattered light arriv-
ing at the camera becomes more intensive than the unscattered
or ballistic one; further, the image is submerged by the noise-
like scattered pattern. Thus, an intuitive method for image ac-
quisition under such hazed conditions is to select the ballistic
light by using gating techniques in the time [1], space [2],
polarization [3], or even coherence [4] domains.

Actually, the propagation and transport of coherent waves in
disordered media has been one of the central problems in many
different disciplines of science and engineering, ranging from
microwaves to electron waves. It has been shown that coherent
scattering in a static scattering medium is linear and determin-
istic and can be described by a transmission matrix [5]. One of

the lines of recent studies then focuses on the ways of reversing
the deterministic coherent scattering process. Physically, this
can be done by generating a phase conjugated version of the
scattered wave [6,7], so that it can trace the way back through
the scattering medium in the first place and form a clear image.
An alternative way is to measure the transmission matrix [8] or
precompensate the phase distortion introduced by the scatter-
ing process by the technique of wavefront shaping [5]. When
applying these methods in dynamic scattering media, the wave-
front measurement and playback must be made within the de-
correlation time [9]. Therefore, faster wavefront modulators,
parallel processing, and more effective optimization algorithms
are highly demanded in these cases [10,11].

Alternatively, one can utilize some intrinsic statistical prop-
erties of the scattered light instead of reversing the scattering
process. For example, the short-range second-order correlation
of a speckle pattern formed by the scattered light, or the
memory effect [12,13], has been found to be particularly in-
teresting in this case, as it allows computational reconstruction
of an object image from the autocorrelation of the scattered
light intensity by using a regular phase-retrieval algorithm
[14,15]. However, the memory effect offers a field of view
(FoV) that is inversely proportional to the effective thickness
of the medium. Thus, this method is usually applicable for im-
aging through optically thin scattering media [14,15] or around
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the corner [16]. We note that efforts have been made to enlarge
the FoV by using multiplexing or scanning [17,18]. But these
techniques have limited effect in the case when the scattering
medium is not static, as the dynamic characteristics of the me-
dia and the spectral width of the light in many practical envi-
ronments will further shrink the correlation length of the
scattered light [15,19] and thereby the FoV of the imaging
system.

An interesting and practically important question then nat-
urally arises, i.e., if it is possible to reconstruct an image when
the coherence of the scattered light is completely lost. At least
two factors may lead to the loss of coherence: multiple scatter-
ing of the light during its propagation inside the scattering
medium [19] and the coherence nature of the light itself.

To answer this question, we attempt to demonstrate that it
is still possible to reconstruct the image of an object hidden
behind a nonstatic and optically thick diffusive medium and
under the illumination of incoherent light. To mimic a realistic
environment, we also switch on an ambient light so as to in-
troduce a strong interference noise that is incoherently super-
imposed onto the scattered light from the object. The method
we use to address this problem is deep neural networks.

Deep neural networks have shown great potential in solving
many computational optical imaging problems [20], ranging
from digital holography reconstruction [21,22], phase imaging
[23,24], computational ghost or single-pixel imaging [25,26],
to coherent imaging through optically thin [27,28] and even
thick scattering media [29,30]. As almost all the deep neural
networks for computational optical imaging were trained super-
visedly (except, for example, the work reported in Ref. [24]), it
is therefore required that each pair of labeled images in the
training set should have exclusively unique features [31].
In the application of imaging through scattering media, when
the illumination is coherent [27–30], what is recorded by the
camera is a high-contrast speckle pattern, the morphology of
which is explicitly object-dependent. However, when the ob-
jects are illuminated with an incoherent light, as in our case,
the coherent effect will be smeared out, yielding milky patterns
that are almost visually indistinguishable with respect to one
another. Therefore, additional care has to be taken to identify
unique features to distinguish each milky pattern.

This article is organized as follows. The problem of incoher-
ent imaging through highly dynamic turbid media is formally
described in Section 2. Measurements of the parameters that
characterize the turbid medium are presented in Section 3.
The experimental demonstration of the proposed method is
presented in Section 4.

2. DESCRIPTION OF THE PROBLEM AND
IMAGING ENVIRONMENT

Let us describe the problem with the help of Fig. 1. An inco-
herent light emitted from an LED (M530L3, Thorlabs) with a
central wavelength of 530 nm was first collimated by using a
Köhler illumination system and then shined on an object
[which was displayed on an amplitude-only spatial light modu-
lator (SLM; Pluto 6001, Holoeye)]. The light reflected from
the SLM was then guided to a glass tank of fat emulsion sus-
pension, which was prepared by mixing a tank of distilled water

and fat emulsion (Intralipid 20%, Fresenius Kabi). Multiple
scattering events occur as the signal-carrying light propagated
through the turbid medium and became highly diffusive when
it left the tank (geometric length: 33.6 cm) from the back sur-
face. An sCMOS camera (Zyla, Andor Technology Ltd.) with
an f � 250 mm imaging lens mounted on it was used to take
the scattered light pattern at the back surface of the tank.
According to the propagation trajectory, the signal scattered
light included a small amount of weakly/snake light and a sig-
nificant part of large-angle scattered light. The snake light con-
tains a small amount of the object information and contributes
to the signal on the imaging plane. The camera was adjusted to
focus on the SLM plane before adding intralipid into the tank.
We also introduced strong interference noise generated by a
high-power LED (Solis-525c, Thorlabs) illuminated from
one side of the tank. The central wavelength of the ambient
LED is 525 nm. This beam of light was also scattered by
the intralipid suspensions, and some of it was superimposed
with the object scattered light incoherently, which can be
treated as interference noise. Although the light was scattered
mostly forwardly in the fat emulsion suspensions, the large
angle and multiple-scattered ambient light was strong in com-
parison with the object scattered light. Indeed, the measured
signal-to-interference ratio was SIR � −17 dB in our experi-
mental configuration.

The optical thickness of the tank of fat emulsion suspen-
sions was about 16 (refer to Section 3 for the details of calibra-
tion). As the absorption of the intralipid is low, we can conclude
that it is the scattering that mostly accounts for the attenuation
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Fig. 1. Incoherent scattering imaging experimental system. (1) and
(2) are the captured scattered patterns (the raw data and corresponding
partial contrast stretched map) with optical thickness of 8 and 16, re-
spectively. Note that these data are recorded in two sets of experiments:
(1) capture data by the camera directly; (2) capture data with two addi-
tional apertures placed before the camera. KLS, Köhler lighting sys-
tem; P, polarizer; ambient light, generated by a high-power LED
through a diffuse slate (the distance between the slate and the tank
side was around 3.5 cm); camera, working with an imaging lens (f �
250 mm, not shown in the figure). d 1 ≃ 41 cm, d 2 ≃ 15 cm. The
33.6 cm thick tank is equipped with fat emulsion diluent to simulate
a dynamic scattering medium. Note that the scattered patterns shown
in (2) look dimmed because a significant part of the large-angle scat-
tered light has been blocked out.
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of the light. Then, the object’s scattered light intensity SfI og
can be expressed as

SfI og � SWfI og � SLfI og, (1)

where SWfI og and SLfI og are the intensity of weak light and
large-angle scattered light, respectively, without considering the
ambient light.

In our experimental demonstration, we also take the ambi-
ent scattered light I a into account. Thus, the final intensity
pattern captured by the camera can be written as

I s � SWfI og � SLfI og � I a, (2)

where the interference noise In � SLfI og � I a, and SW
can be approximately regarded as the signal component of
the recorded image I s. Thus, the signal-to-interference ratio
SIR � 10 log10 SWfI og∕In � −17 dB.

Thus, the purpose is to reconstruct the object image I o
from I s.

3. CHARACTERIZATION OF THE INTRALIPID
SUSPENSIONS

Fat emulsion is similar to milk in many ways and mainly con-
sists of soybean oil, water, glycerin, and eggphospholipid. Due
to emulsification in the presence of phospholipids, the oil is
suspended in water as small droplets with a momolayer lipid
membrane. As a large amount of fat droplets are randomly dis-
tributed in the emulsion suspensions, a beam of light that prop-
agates through it is distorted owing to multiple scattering,
making it difficult to predict the propagation trajectory for each
light ray.

Owing to the advantages such as low absorption, easily
adjustable scattering coefficient by dilution, standardized par-
ticle size distribution, nontoxicity, and low cost [32], intralipid
has been frequently used as an optical phantom that mimics a
turbid medium, in particular, for biomedical applications. For
example, it has been widely used in the calibration of clinical
application systems [33,34] and as a diffusive reference stan-
dard for optical tissue modeling [35,36]. Many studies have
been carried out to measure the scattering properties of intra-
lipid suspensions [32,37]. However, when it is used as a scat-
tering medium in imaging, the decorrelation time and optical
thickness are quite important parameters related to the scatter-
ing, which are rarely measured or quantified. Thus, we need to
calibrate these two parameters in this section.

A. Optical Thickness
The optical thickness (OT) is a parameter deduced from the
Lambert–Beer law:

I � I0e−OT � I0 · e−μ·c·L, (3)

where I 0 and I are the ballistic light intensities measured in
front of and behind the tank of intralipid suspensions, μ is
the attenuation coefficient, c the concentration of intralipid di-
lution, and L the path length through the suspensions. The
attenuation coefficient μ is the sum of scattering coefficient
μs and the absorption coefficient μa, i.e., μ � μs � μa.

Since we used the 530 nm LED (M530L3, Thorlabs) in our
demonstrations, the optical thickness of the fat emulsion
should be measured at or at least closed to this wavelength.

We thus used a semiconductor pumped green laser with a
wavelength of 532 nm as the light source in the calibration
process. An optical power meter (PM200, Thorlabs) with
the probe diameter of 9.5 mm was used to measure I 0 and I .
Then, the optical thickness can be calculated according to
Eq. (3). Note that the contributions to the absorption of fat
emulsion are mainly from water and soybean oil, while the in-
fluence of glycerin and egg lipid can be ignored due to the low
concentration. For the light at around 530 nm, the absorption
coefficient μa is about 10−4 mm−1 according to a previous study
[32], so that its influence can be ignored; therefore, μ ≈ μs.

In the measurement, we first filled in the glass tank with a
volume of 11.46 L purified water (33.6 cm × 19.5 cm ×
17.5 cm) and then gradually dropped 0−4mL fat emulsion
(intralipid 20%, Fresenius Kabi) into the water to make the
intralipid suspensions with different density. Each time, about
0.4 mL intralipid was dropped into the tank of water. Then, we
stirred the mixed fluid with a stick, let it stand for about 5 min,
and then used a power meter placed on the beam path to mea-
sure the power of I 0 and I . A large black cardboard with a
3 mm diameter aperture was used to select the ballistic light
when measuring I . Then, the optical thickness can be calcu-
lated according to Eq. (3), and the result is plotted in Fig. 2(a).
One can see that the experimental data linearly fit the theory
very well. From the slope of the fitted line segment, we can
obtain the scattering coefficient of the intralipid 20%,
μs � 132 mm−1, which is consistent with previous studies
[32]. Deviation of the measurement data from theoretical pre-
diction is observed when the density is high. This is because of
the unnegligible contribution of some amount of scattered light
received by the power probe. Nonetheless, we can conclude
that the optical thickness of the fat emulsion suspensions
was about 16 when 4 mL intraplid was applied. This is the
turbid medium that we want to look through.

The averaged diameter of the droplet is around 0.3 μm [38];
at a scale comparable with the wavelength of the light, Mie
scattering occurs when light passes through the fat emulsion
suspension. During our experiment, we observed the Tyndall
effect from the side of the tank, as shown later in this paper,
which was taken by a mobile phone camera at the experiment
site. Every droplet in the fat emulsion can be seen as a secon-
dary source that re-emits a wavelet, the superposition of which
forms a speckle pattern. However, we observed an interesting
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Fig. 2. Optical thickness of intralipid suspensions with respect to its
density. (b)–(j) Speckle patterns corresponding to different densities.
Scale bar: 200 μm.
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phenomenon, i.e., the appearance of the speckle pattern
changes with respect to the density of the intralipid suspen-
sions. When the density is low, the speckle grain has a shape
like a thin stripe [Fig. 2(b)–2(e)]. The reasons for this can be
addressed as follows. First, the density of fat emulsion is low so
that only a few scattering events occur to the light that prop-
agates through it. That is why the contrast of the speckle in this
case is very high compared with Figs. 2(i) and 2(j). Second, the
droplets are moving downward owing to the gravity of the
Earth during the course of data acquisition. Finally, the camera
plane may be tilted with respect to the incoming light [39]. As
the intralipid density increases, many more scattering events
occur as the light propagates through the tank. As a result,
the speckle pattern is formed by the interference of light waves
that experienced various times of scattering. The speckle grain
becomes more isotropic, but the contrast is apparently reduced
(to 0.08).

B. Decorrelation Time
As noted, a large number of fat droplets are randomly distrib-
uted in emulsion suspension. Owing to gravity and Brownian
motion in the surrounding liquid [40], these droplet scatterers
are not static but moving randomly, resulting in fluctuations of
light propagation trajectory in the turbid suspensions. For ana-
lyzing the influence of particle motion on the light scattering in
this case, one usually attempts to measure the temporal corre-
lation by using diffusing wave spectroscopy (DWS) [40–42]. In
this paper, we propose an alternative method to characterize the
temporal correlation property of the intralipid diluents with
different concentrations in the 33.6 cm thick glass tank.

As illustrated in Fig. 3, when the scatterers move randomly
during time interval Δτ, the light propagation path, including
multiple scattering events, will undergo unpredictable changes.
It is obvious that the path fluctuation reflects the motion of the
scatterer. Intuitively, we need to evaluate the temporal correla-
tion between electric fields E�t0 � Δτ� and E��t0� at point r
(with a source placed at r0), which are closely related with the
paired trajectories, as represented in Fig. 3. However, since tra-
ditional image sensors only record intensity, it is in principle
not possible to directly detect the electric fields. According
to the Siegert relation [43], the intensity correlation function
can be associated with the electric field correlation function as

hI�t0�I�t0 � Δτ�i
hI�t0�ihI�t0 � Δτ�i − 1 � β

���� hE�t0 � Δτ�E��t0�i
hE�t0 � Δτ�ihE��t0�i

����
2

, (4)

where β is an experimental factor between 0 and 1. Obviously,
the temporal correlation property of the nonstatic medium can

be characterized by using intensity-only measurements and cal-
culate the intensity correlation between the speckle patterns
taken at time t0 and at a later time t0 � Δτ.

The experimental system we designed to measure the tem-
poral correlation of the speckle patterns is shown in Fig. 4.
A semiconductor pumped laser emitted at 532 nm (MLL-S-
532-A, Changchun New Industries Optoelectronics Tech.
Co., Ltd.) was used as the incident light to illuminate the intra-
lipid suspensions. The scattered light was divided into two arms
by a beam splitter (BS) and collected, respectively, by two cam-
eras (GS3-U3-23S6M-C, Point Grey). The dual cameras were
controlled by an external trigger to achieve precise adjustment
of the time lag of the two camera shutters. As shown in
Fig. 4(a), the external control board Arduino generated two rec-
tangular signals with a time interval Δτ to trigger the two cam-
eras, each of which acquired a speckle pattern, I�t0� and
I�t0 � Δτ�. This allows us to calculate the correlation coeffi-
cient between these two speckle patterns:

C�Δτ� � δI�t0� · δI�t0 � Δτ�
δI�t0� · δI�t0 � Δτ� , (5)

where δI � I − Ī , and Ī is the mean of I . This function is ba-
sically identical with the temporal intensity correlation on the
left-hand side of Eq. (4). By controlling the time delay Δτ via
the Arduino controller, it is therefore possible to calculate the
curve of C�Δτ� with respect to different Δτ, manifesting the
decorrelation behavior of the suspensions. In our experiment,
the Arduino controller is set to trigger the two cameras with a
minimum time lag of 100 μs. In this way, we can measure the
decorrelation behaviors of the intralipid suspensions with dif-
ferent concentrations. The experimental results are plotted
in Fig. 5.

In order to determine the decorrelation time, we need to fit
the data of C�Δτ� to a theoretical model. Note that there are
various contributions to the correlation function that are deter-
mined by the different sets of multiple scattering trajectories,
which are classified in terms of the crossing number of two dif-
fusive paths [44]. Each contribution has discrepant time-
dependence owing to different pairings of two trajectories
obtained at time t0 and t0 � Δτ, respectively. One dominant
contribution, C �1�, the one without crossings, decreases expo-
nentially with Δτ. Further, it specifies the memory effect
[12,13]. Another considerable contribution, C �2�, has one
crossing, which decreases algebraically [45]. Generally
speaking, for one more path crossing, the corresponding

Fig. 3. Multiple scattering trajectories in dynamic media. In this
illustration, scatterers move from the black circle to the blue circle
during time interval Δτ, and ri �i � 1,…, n,…,N � represents the
location where scattering event occurs.

Fig. 4. Experiment setup. (a) Dual camera acquisition system.
(b) Experimental site map of intralipid dilution: 11.47 L purified water
(33.6 cm × 19.5 cm × 17.5 cm) and 2 mL intralipid 20%.
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contribution is reduced by a factor g, which is a large dimen-
sionless number with a value at the order of 102 for a visible
light in liquid suspensions [44,45]. As the contributions of
other correlation terms with multiple crossings can be ne-
glected, we only consider the effect of C �1� and C �2� here.
Specifically, these two terms can be expressed as [19]

C �1��Δτ� �
�

L∕Ls
sinh �L∕Ls�

�
2

, (6)

C �2��Δτ� � 1

g
1

sinh2�L∕Ls�

�
sinh�2L∕Ls�

2L∕Ls
− 1

�
, (7)

where L is the geometric thickness of sample, and

Ls �
ffiffiffiffiffiffiffiffi
Dτe

p
· f �Δτ�, (8)

where D is the diffusion coefficient that describes wave diffu-
sion and is related to the elastic mean free path l e , τe is the
elastic collision time, and

f �Δτ� �
�

e−Δτ∕�2τb�

1 − e−Δτ∕�2τb�

�
1∕2

, (9)

where τb describes the Brownian motion of the scatterers. One
should note that τb is the characteristic time for a scatterer to
move a distance in the order of wavelength λ.

We fit the experimental data with the weighted sum of C �1�

and C �2� defined in Eqs. (6) and (7), respectively, with the fit-
ting parameters a, b, m, and n as

C�Δτ� � a
�

m∕f �n ·Δτ�
sinh�m∕f �n ·Δτ��

�
2

� b
1

fsinh�m∕f �n ·Δτ��g2
�
sinh�2m∕f �n ·Δτ��

2m∕f �n ·Δτ� − 1

�
:

(10)

Apparently, the parameters a and b represent the related con-
tributions of C �1� and C �2� to C . And m is a parameter related
to L∕

ffiffiffiffiffiffiffiffi
Dτe

p
, while n is associated with τb. The fitting results are

plotted as solid lines in Fig. 5. From these fitted curves, one can

easily determine the decorrelation time τd , which is defined as
the time where the correlation coefficient drops to 1∕e of its
maximum. We found that τd for the suspensions with 0.8,
1.2, 1.6, and 2.4 mL intralipid 20% are 13, 4.8, 2.6, and
1.2 ms, respectively. Unfortunately, owing to the light being
scattered too many times when we applied 3.6 mL intralipid
or more in the tank, the decorrelation time drops dramatically,
and the cameras are not fast enough to capture this process. We
can conclude that the decorrelation time in this cases must be
less than 100 μs, which is the shutter speed limit of our cam-
eras. Therefore, we assume that the decorrelation time of the
turbid suspensions is around several to several tens of micro-
seconds, corresponding to an optical depth of around 16.

4. EXPERIMENTAL DEMONSTRATIONS

A. Experimental Data Acquisition
For the demonstration of the proposed method, we developed
an experimental system, schematically shown in Fig. 1, to ac-
quire all the data. In the first experiment, the optical thickness
of the fat emulsion suspensions was 8 (2 mL intralipid 20%). In
the second set of experiments, the optical thickness of the sus-
pensions was about 16 (4 mL intralipid 20%), and decorrela-
tion time was at the order of microseconds.

Here, we propose an end-to-end deep neural net to recon-
struct object images from the acquired data. For convenience,
we used 10,050 images altogether from the MNIST data set
[46] as the training and test data. We first resized the original
MNIST images to 512 × 512 pixels and displayed them se-
quentially onto the central pixels of the 1024 × 1080 pixel
SLM. An incoherent LED light was used to illuminate the sys-
tem. Reflected from the SLM, the incoherent light was then
projected onto the front surface of the tank by using a delayed
optic. As the light transmitted from the front surface all the way
through the turbid suspensions to the back surface of the tank,
it encountered many scattering events, as discussed in
Section 3. The scattered patterns at the back surface of the tank
were then captured by the sCMOS camera with an imaging
optic. Note that there was also strong interference noise pro-
duced by an ambient light, with SIR � −17 dB, as described
by Eq. (2). Only the central 512 × 512 out of the 1024 × 1024
pixels of the raw image taken by the camera were used in the
reconstruction process. Our previous study [29] shows that this
does not affect the quality of the reconstructed image. Owing to
the limited frame rate of the SLM and the sCMOS camera, it
took about 3.5 h to capture all 10,050 scattered patterns. Then,
we partitioned them exclusively into two groups, one with
9900 patterns as the training set after pairing up with their cor-
responding ground true images (those displayed on the SLM),
and the other as the test set. Typical visible features of the scat-
tered patterns are shown in Fig. 1.

B. Proposed Learning-Based Method for Image
Reconstruction
The objective, then, is to reconstruct the object I o from the
corresponding recorded scattered pattern I s. For the supervised
training of a neural network, we need to construct a training
set by pairing up every MNIST image in the training set
together with the corresponding scattering pattern I s,

Fig. 5. Decorrelation curves for different concentrations of intrali-
pid dilutions. The data points and the error bars represent the mean
value and the standard error of the correlation coefficient calculated
from 10 image pairs. The solid lines in different colors are the fitting
results, and the corresponding intralipid volume V I and optical thick-
ness (OT) are shown in the legend. Here, the coefficient of determi-
nation (R-square) is used to describe the goodness of fit. Note that the
horizontal axis is logarithmic scale.
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i.e., S training � f�I �1�s , I �1�o �, �I �2�s , I �2�o �,…, �I �N �
s , I �N �

o �g. Then,
we can converse the problem to learning the probability distri-
bution P�I ojI s� [47] or the mapping relation Rlearn: I s → I o
from the training set. Once it is learned, an object I o in the
test set should be predicted from the corresponding scattered
pattern I s [29]. The objective function then can be defined as

Rlearn � arg min
Rθ , θ∈Θ

XN
n�1

L�I �n�o ,RθfI �n�s g� � g�θ�, (11)

where the set Θ contains handcraft parameters that specify the
network structure and weighting parameters that are automati-
cally adjusted during the training process [48], L�·� is the loss
function that evaluates the error between label Ino and predicted
outputRθfIns g, and g�θ� is a regularizer defined on the param-
eters with the aim of avoiding overfitting [20].

We adopted the convolutional neural network (CNN) [46]
to solve the problem described by Eq. (11). Refer to
Appendix A for more details about the structure of the neural
net we designed.

To train the neural net, we must specify the loss function in
Eq. (11). In this work, we adopted the mean square error
(MSE) as the loss function to evaluate the predicted network
outputs and ground truth images:

MSE � min
1

WHN 1

XN 1

n�1

XW ,H

�u, v�
�I �n�p �u, v� − I �n�o �u, v��2, (12)

where I �n�p �u, v� is defined as the reconstructed image from the
nth scattered pattern I �n�s �u, v�, I �n�o �u, v� is the corresponding
ground-truth resized MNIST image, W and H are the width
and height of the reconstructed image, andN 1 is the batch size,
which was set to 5 in this work. We used the stochastic gradient
descent method [49] to evaluate the MSE and Adam [50] to
adjust the weights. The training step number was set as 30,000;
in practice, however, we were able to use less training steps.

C. Experimental Results
The experimental results are shown in Figs. 6(b) and 6(c). In
comparison with the corresponding ground truth images
shown in Fig. 6(a), the MNIST images are reconstructed
successfully. We use the root of mean square error (RMSE)
and structural similarity index (SSIM) [51] to evaluate recon-
structed images quantitatively. These functions are defined as

RMSE �
�

1

WH

XW ,H

�u, v�
�Ip�u, v� − I s�u, v��2

�1
2

, (13)

SSIM �
�2μIpμI s � c1��2σI pI s � c2�

�μ2I p � μ2I s � c1��σ2Ip � σ2I s � c2�
, (14)

where μI and σ2I are the mean and variance of the image I , σIpI s
is the covariance between I p and I s, and c1 and c2 are regulari-
zation parameters. Basically, the RMSE measures the averaged
difference between the reconstructed and corresponding
ground truth images, whereas the SSIM evaluates the structure
similarity between the two images. We calculate the RMSE and
SSIM of all the 150 test images. The averaged values are 5.25
and 0.99, respectively.

As mentioned above, we also performed a second set of ex-
periments, in which the optical thickness of the turbid suspen-
sion is 16. In this case, we muse block out a significant part of
the large-angle scattered light by placing two apertures between
the back surface of the tank and the camera. The captured scat-
tered patterns then look dimmed, as shown in panel (2), Fig. 1.
The corresponding reconstructed images from the proposed
neural net are plotted in Fig. 6(c). With respect to the ground
truths, the RMSE was about 4.66 and the SSIM was around
0.98, at the same level as those shown in Fig. 6(b).

D. Robustness Analysis
In this subsection, we concisely analyze the robustness of the
proposed technique. The optical thickness of the turbid sus-
pension is 16 in all the analysis here.

1. Robustness against the Movement of Object/Camera
The first situation we considered is how the change of the ob-
ject/camera position in the test with respect to that in the train-
ing affects the reconstructed image without retraining the
neural net. The experimental results are shown in Figs. 7
and 8. In Fig. 7, we consider the separated effect of the change
of position of the object and the camera, both along the diago-
nal and horizontal directions. One can see that, in all the cases,
the images are reconstructed with the SSIM value better than
0.8. The proposed method seems to be more robust to the
change of the object position owing to the scattering of light
from the object. The RMSE values do not reflect the robustness

Fig. 6. Experimental results. (a) Ground truths, and the recon-
structed images in the case that the optical thickness equals (b) 8
and (c) 16, respectively.

Fig. 7. Robustness against the position change of the object/camera.
Δd is the displacement of the object/camera (in pixel). The data points
and the error bars represent the mean values and the standard devia-
tions of the SSIM/RMSE of 10 reconstructed images (digits ‘0–9’).
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in these cases because of the shifting of the reconstructed image,
as shown in the insets of Figs. 7(a) and 7(c). In addition, arte-
facts arise when the object is shifted too far away, as can be seen
in the insets in Fig. 7(a).

The robustness to the scaling and rotation of the object/
camera is shown in Fig. 8. In both cases, the image can be re-
constructed well. Again, it is more robust to the change in the
object (both scaling and rotation) owing to the reason men-
tioned above.

2. Generalization to Nondigit Objects
We also used the trained neural net to reconstruct nondigit
objects from the corresponding scattered patterns. The results
are shown in Fig. 9. Two types of objects were used: virtual
objects, which were displayed on the SLM [Fig. 9(a)], and a
physical USAF target [Fig. 9(b)]. The experimental results

suggest that the proposed technique can be used to reconstruct
objects that can be far from those that were used to train the
neural net.

3. Reconstruction of Nature Images
However, the neural network has to be retrained if the object is
more complex such as nature scenes that are in gray scale and
have complex structures. However, it is still possible to recon-
struct the image with a good fidelity. For demonstration, we
tried the proposed method on a more complex set of objects.
We took the STL-10 data set [52] in our experiment.
Specifically, we used 19,000 images to retrain the network
model and other 1000 images for testing. Some of the typical
results are shown in Fig. 10. The averaged RMSE and SSIM
values are 36.14 and 0.63, respectively.

5. CONCLUSION

In conclusion, we have demonstrated an end-to-end deep-
learning-based incoherent imaging method through optically
thick and dynamic scattering media under a condition of strong
interference noise (SIR � −17 dB). The proposed method al-
lows direct reconstruction of an object image from the captured
scattered pattern with high quality (with an averaged RMSE
around 5 and averaged SSIM about 0.86). We have quantita-
tively measured the optical thickness and decorrelation time of
the turbid suspension [which was made by mixing fat emulsion
(intralipid 20%) with purified water], with respect to the intra-
lipid concentrations, and calibrated the optical thickness of the
tank of intralipid suspensions in our experiments, which is
about 16 in the severest case. Although the results were ob-
tained in the lab environment, it is expected that the proposed
method can be used in a wider scope of other scattering
environments.

APPENDIX A: CNN STRUCTURE

The proposed neural network structure is based on the one we
published previously in Ref. [22] and shown Fig. 11. As can be
seen, the neural network has a typical U-net structure [53] but
with independent branches, which are designed to learn the
training set features at different scales.

In our experiments, the central 512 × 512 pixels of each cap-
tured scattered pattern I s have to be preprocessed before input
into the neural network. These images were first processed by
three sets of convolution blocks and a max-pooling layer, resiz-
ing the image size to 64 × 64 pixels. Then, the network was
divided into four independent paths, each of which equips
with a max-pooling layer to implement one, two, four, and

Fig. 9. Reconstruction of nondigit objects with the neural network
trained by using digits. (a) First and third rows are the ground truths;
second and fourth are the corresponding reconstructed images.
(b) Reconstructed USAF target and the highlight of some of its
portions.

Fig. 10. Experimental results with natural scene object. (a) Scattered
patterns. (b) Corresponding ground truth. (b) Reconstructed results.
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Fig. 8. Robustness against the scaling and rotation of the object/
camera. β is the scaling factor of the image size, Δθ the rotation angle,
and Cg the image contrast gradient. The data points and the error bars
in (a)–(d) represent the mean values and the standard deviations of the
SSIM/RMSE of 10 reconstructed images (digits ‘0–9’). (e) and
(f ) SSIM/RMSE of digit ‘5’ with respect to Δθ and Cg . (g) Visualized
reconstructed digits.
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eight times downsampling of the incoming images, respectively,
as indicated by the downward arrows in Fig. 11(a). For each
data flow path, after the pooling layer, images were put to four
identical residual blocks and an appropriate number of upsam-
pling blocks, which was designed to make image size as 64 × 64
pixels. Next, these independent paths were concatenated into
an intact image, which contains 192 feature maps. It was then
followed by a series of convolution blocks and three upsam-
pling blocks to resize the output image to 512 × 512 pixels.
Finally, a convolution block was used to reduce the output
channels to 1, so that the output results were gray-level images.
The final output of our neural network was the reconstructed
images I o when the network was well-trained.

Now, we present a detailed description of the proposed neu-
ral network. There are mainly three types of functional blocks
in the neural network: the convolution block, the residual
block, and the upsampling block, as shown in Fig. 11(b).
Compared with the neural network in Ref. [22], a batch nor-
malization layer [54] is added into the convolution and residual
blocks, so as to accelerate learning speed and be less sensitive to
initialization. Furthermore, it is also expected to act as a reg-
ularizer, as described in Eq. (11). In our implementation, the
convolution block contains a convolutional layer, a batch nor-
malization layer, and an activation function. The convolution
layer is the core layer to build a convolutional neural network
and achieves feature extraction at different scales. The activa-
tion function used here is the rectified linear units. As shown in
Fig. 11(a), a max-pooling layer is periodically inserted between

successive convolution layers, and its function is to gradually
reduce the spatial dimension of the data and the number of
internal weights required for image reconstruction. Here,
max pool is with 2 × 2 filters and stride 2, so the image size
is reduced by a factor of 2. The residual block includes two
consecutive groups consisting of a convolutional layer, a batch
normalization layer, and an activation function. The shortcut
connections between the input and the output enable us to
optimize the neural network and improve accuracy by adding
considerable depth. In addition, the upsampling block is com-
posed of a transposed convolution layer and an activation func-
tion, which is to achieve image enlargement and convolution
decoding. The stride of the transposed convolution layer is set
as 2 to double the image size by zero-padding in between two
adjacent pixels. Moreover, the detailed input channel numbers
and output channel numbers of hidden layers in the neural net-
work are represented as 1-16, 16-32, etc., as shown under the
block symbols in Fig. 11(a). The size of convolutional kernels is
presented as (5, 5) or (3, 3) below the channel numbers.
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